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ABSTRACT

This paper investigates synchronicity and idiosyncrasy between the
Capesize and Panamax freight rates. To do this, we estimate three dynamic linear
models in a state-space model framework including common stochastic trend
model, dynamic factor model, and unobserved component model using the data on
two dry bulk shipping markets. In particular, the unobserved component model
that incorporates both common stochastic trend and common mean-reverting
components is newly proposed in this paper. Our estimation results exhibit that the
presence of common stochastic trend and cyclical components is significant,
indicating strong synchronized dynamics between the Capesize and Panamax
freight rates. Furthermore, this paper discusses the parameters instability problem
by rolling the estimations whose sample consists of one year daily observations.
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1. Introduction

The global shipping industry transports over 80 per cent of international
trade in physical terms (UNCTAD, 2017). While container shipping provides the
transportation services of manufactured cargo, bulk shipping delivers bulk cargoes
such as raw material (dry bulk shipping) or oil (wet bulk shipping, i.e., tanker
shipping). However, the dry bulk shipping markets can be classified into four sub-
sectors based on the ship sizes. These four dry bulk ships are Capesize, Panamax,
Supramax, and Handysize. A Capesize ship, at about 180,000 dead-weight tons
(DWT) primarily transports iron ore and coal; a Panamax ship (about 82,000 DWT)
transports grain, coal, and iron ore. Because a large portion of the cargoes delivered
by each ship (Capesize and Panamax) are the same such as iron ore and coal, their
transportation demands co-move. This co-movement of cargo demands causes
their freight prices (rates) to move together. The popular BDI (Baltic Dry Index)
can be regarded as representing this co-movement in the dry bulk shipping freight
markets.

Despite the possibility of synchronicity between the dry bulk shipping
markets, however, there are various peculiar factors to each market. For example,
due to their deep draught and limited number of commodities that they transport,
the operation of Capesize vessels in terms of trading routes and ports they can
approach is restricted (Alizadeh and Nomikos, 2010, p.324). That is, Capesize ship
is involved in narrower shipping service than other ships. This inflexibility causes
high volatility of Capesize market prices (esp., freight rates). In summary, these
synchronicity and idiosyncrasy in dry bulk shipping markets should be analyzed
simultaneously (e.g., see Ko 2011a, 2011b).

A plausible way to analyze the synchronicity and idiosyncrasy is to assume
that there are some common (i.e., synchronistic) and peculiar (i.e., idiosyncratic)
factors. As suggested by Kim and Nelson (1999), synchronicity can be captured by
common stochastic trends in a non-stationary case or dynamic common factors in
a stationary case. The non-stationary common stochastic trend and stationary
dynamic factor models can also be constructed in an unobserved (or latent)
components (permanent trends plus transitory cycles) model framework. It is
important to note that the data generating process with common non-stationary
stochastic trends can be represented by a vector error correction model (see Stock
and Watson, 1988, and Watson 1994, pp.2870-2876). The presence of co-
integrating vectors implies a long-run relationship between the integrated variables,
but this approach is not useful for decomposing the variables into common and
idiosyncratic components in an orthogonal way.

This paper adopts various dynamic linear models including common
stochastic trend model, dynamic common factor model, and unobserved
component model in order to quantify the synchronicity and idiosyncrasy in the
dry bulk shipping markets. In particular, the unobserved component model
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proposed in this paper is most generalized and novel to the best of our knowledge,
as it incorporates both common stochastic trend and common mean-reverting
cyclical components. More importantly, it turns out that this model is preferred to
the other models. This finding implies that the presence of both common stochastic
trend and cyclical components is significant, indicating strong synchronized
dynamics between the Capesize and Panamax freight rates. Furthermore, this paper
discusses the parameters instability problem by rolling the estimations whose
sample consists of one year daily observations. One additional contribution of this
paper is to suggest an estimation algorithm for decomposing the non-stationary dry
bulk freight rates into common component and idiosyncratic component within the
unifying framework.

Numerous previous empirical studies attempt to analyze the unobserved
common and peculiar components in various economic variables. In general,
common factors are interpreted as aggregate or global events, and the idiosyncratic
factors are regarded as variable-specific events. However, the traditional notion of
time series econometrics that the unobserved commonality would exist in observed
economic realities (or variables) may not be acceptable for non-econometricians.
They can argue that the actual existence is indeed the concrete activities (or
variables) and thus unobserved commonality is simply an artificial concept for
enhancing the understanding of actual concrete phenomena. This hesitation to use
virtually unobserved statistical metric is not new. For instance, Stigler (1986)
showed that social scientists “tried to overcome the conceptual barrier” in about
eighty years during the historical process of regression analysis’s (in 1885)
following the least squares (in 1805). That is, the simple development from least
squares method to regression analysis took about eighty years, which had been due
to the difficulty in overcoming the “conceptual barrier” (p.5).

However, whether accepted or not, the aforementioned structural
characteristics of dry bulk shipping markets make the Capesize and Panamax co-
move. Therefore, the mathematical modelling of these markets using common
factors enables us to measure their virtual synchronicity and idiosyncrasy in a
unified framework. These synchronicity and peculiarity in dry bulk shipping
markets motivates this study to scrutinize the markets through the three dynamic
linear models. Furthermore, this understanding of the dynamics of freight rates will
help the participants in dry bulk shipping markets enhance the management
efficiency of their revenues and market risks. For instance, the practical advantages
of the state-space models have been demonstrated by policy institutions such as
central banks and ministries (Barigozzi, Lippi, and Luciani, 2016a, p.2,2016b, p.2).

This paper is organized in five sections: Section 2 presents a review of the
relevant literature of econometric approaches of dynamic linear model and their
applications to dry bulk shipping markets; Section 3 describes the empirical
models; Section 4 explains the dataset and the empirical results with discussions;
Section 5 concludes by suggesting future research topics.
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2. Literature Review

In this section, the two strands of literature are reviewed. One is on the
econometric approaches such as dynamic factor, common stochastic trend, and
unobserved component models. The other is on the applications of these
econometric models to dry bulk shipping markets.

It is known that Geweke (1977) introduced the dynamic factor analysis in
econometrics. Compared with the stationary dynamic factor model, there have
been numerous attempts to apply the non-stationary common stochastic trend
models to economic analyses. Inter alia, Chang, Miller, and Park (2009) extracted
a single trend and thus calculated a representative index by using state-space model
with Kalman filter, which is a kind of common stochastic trend model. Clark (1987)
suggested a well-known unobserved component (non-stationary plus stationary
components) model based on univariate time series data and was extended to bi-
variate cases (Clark, 1989).

However, the approach based on dynamic factor models has become
increasingly popular in the econometric analyses. In particular, there have been
various efforts to incorporate the non-stationary dynamic factors (whether of
common components or of idiosyncratic components) in the dynamic factor
models. Barigozzi and Luciani (2017) “first disentangle common and idiosyncratic
dynamics by using a Non-Stationary Approximate Dynamic Factor Model and
then disentangle common trends from common cycles by applying a non-
parametric trend-cycle decomposition to the latent common factors” (p.2). Their
key contribution is to “differentiate from the standard state-space approach in
which the trend and cycle dynamics are explicitly specified and jointly estimated
with the parameters of the model” (p.3). Barigozzi, Lippi, and Luciani (20164,
2016b) constructed the dynamic factor models where the common factors can be
non-stationary and the idiosyncratic components can also be non-stationary. This
possibility that the idiosyncratic components can be non-stationary was a crucial
differentiation from the previous studies with the idiosyncratic elements stationary
(e.g., Bai, 2004 and Pefia and Poncela, 2006). Furthermore, these two studies
allowed cointegration relationship between the unobserved components.

However, the stability assumption of parameters (e.g., factor loadings in
dynamic factor models) in the equations of unobserved components may not be
satisfied. If not stable, there could be two forms of parameter instability. One is to
have some break points and another is for the parameters to evolve over the
considered period. This topic of instability in the parameter values was reviewed
briefly in Stock and Watson (2016, pp.437-440). In addition, when the break time is
unobserved, popular dynamic linear model with Markov switching regimes could be
used in which the so-called Kim filter (Kim, 1994) is known to be reliable and
efficient in both of the classical and Bayesian frameworks (see Kim and Kang, 2019).

In shipping literature, there have been various applications of cointegration
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models. Veenstra and Franses (1997) applied a co-integration model to the analysis of
relationship between Capesize and Panamax freight markets. Particularly, they used a
common stochastic trend approach for forecasting freight rate. Chen, Meersman and
Voorde (2010) investigated the interrelationships in daily returns and volatilities
between Capesize and Panamax price series in the four major trading routes.

Ko (2010a) applied a dynamic factor model to dry bulk freight markets. To the
best of our knowledge, his dynamic factor model using the change rates, not the freight
level, is the first attempt to analyze the synchronicity and idiosyncrasy in a unified
framework. In addition, this study showed that there had been some structural breaks
in the synchronicities of the considered shipping markets. Ko (2010b) analyzed the
same dry bulk shipping markets through the lens of a common stochastic trend model.
He tried to suggest an alternative method of calculating an index representing a general
movement by using the level variables of the dry bulk shipping markets. Furthermore,
his lens of common stochastic trend model could decompose the freight data into
common (or permanent) and idiosyncratic (or transitory) components.

Recently, there have been some notable studies using dynamic factor model
and common trend model. Angelopoulos, Sahoo and Visvikis (2020) analyzed the
interrelationships among the commodity, maritime transportation, and financial
markets with different frequencies (daily, weekly, and monthly) in a single time
series model, i.e., dynamic factor model. Adland, Benth and Koekebakker (2018)
modeled the dynamics of ocean freight rates in a cointegrated time series model.
These two researches adopted the same perspective of this paper in the sense that
there would be some commonalities and idiosyncrasies in the shipping markets.

This paper contributes to the literature in the following three ways. First,
this paper confirms the usefulness of dynamic factor model (Ko, 2010a) and
common stochastic trend model (Ko, 2010b) in the analysis of synchronicity of
dry bulk shipping markets by using more recent data. Second, this study
synthesizes the previous dynamic factor model and common stochastic trend
model by using an unobserved component model. Third, this paper examines the
parameter instability of the underlying model assumed by specified state-space
approach, which will trigger future researches to model the dynamics of the
considered parameters. In other words, this paper shows the future research
direction, for example, to model the dry bulk shipping freight rate movements by
using some synthesizing time-varying coefficients unobserved component model.

3. Methodology

In this section, first, a representative state-space model is presented and its
estimation algorithm is explained briefly. Second, the three state-space models of
this paper, that is, common stochastic trend model, dynamic factor model, and
unobserved component model will be specified.
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3.1 Introduction of state-space model and its estimation algorithm using
the Kalman filter

State-space model is a powerful systematic tool, especially for estimating
unobserved states from observed data (For more detailed information on the state-
space model and its estimation algorithm, see Kim and Nelson, 1999 or the
Appendix of this paper). It consists of measurement equation and state (or
transition) equation. The second state (or transition) equation specifies the
“transition” dynamics of unobserved “state” variables. The first measurement
equation links the observed data with the unobserved state variables. One
representative state-space model is as follows:

[Measurement Equation]

ye = H B+ E¢, - 1)
[State (or Transition) Equation]

Bt = F Br—1 + V.- 2)

The above state-space model is typically estimated by the Kalman filter
(Kalman, 1960), which consists of a prediction step before observing new
information and an updating step after observing this new information. In advance
of explaining the Kalman filter, we define the notations as follows:

Table 1. Notations for State—Space Model

Definition Explanation
y the information set
expectation (estimate) of B,
Btlt—l = E[Btllljt—l] P ( ) Pe

conditional on information up to t-1

covariance matrix of B,
conditional on information up to t-1

Ptlt—l = E[(Bt - Btlt—l)(Bt - Btlt—l)’]

Bt = E[Belw] expectation (estimate) of By,
ot e conditional on information up to t

covariance matrix of B,
conditional on information up to t

pt|t = E[(Bt - Btlt) B — Btlt)’]

Veje—1 = E[yelWi_q] forecast of y:, given information up to time t-1
Neje—1 = Yt — Yeje-1 prediction error
foe-1 = E[T]t2|t—1] conditional variance of the prediction error

Source: Kim and Nelson (1999, p.22)

Based on these notations, we can use the following algorithm (or procedure)
until the estimated (hyper-) parameters maximize the natural log likelihood, as
follows:
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Figure 1. Flowchart for the Kalman Filter of State—Space Model
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Source: Kim and Nelson (1999, p.26)

Assuming that H is available at the beginning of time t and a new
observation of y; is made at the end of time ¢, the Kalman filter consists of the
following two steps:

Prediction

Given the system’s dynamics as expressed in Equations 1) and 2), the
unobserved variable (; can be predicted by using the information up to the last
period. This prediction yields By -1, based on which we can predict y, which
yields yy¢—q. This process includes two uncertainties: The first is derived from the

nature of the unobserved variable, as this variable cannot be directly observed. The
second uncertainty is from the disturbance term in the measurement equation.
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Updating

As the observed variable y, is realized, new information becomes
available; specifically, the prediction error can be calculated from the realization
of y;, and this can be used for a more accurate inference of ;. This updating step
uses the so-called “Kalman gain,” which is the weight assigned to the new
information about B; contained in the prediction error. However, By (the
estimate of [3;) will be used as an input for the prediction in the next period.

3.2 Three state-space models

3.2.1 Common stochastic trend model

The first model of this paper is a common stochastic trend model as follows:
Iny;: = vi X x¢ + e, ;¢ ~i.1.d.N(O, a?),

Xe = Xp—q + Vg, U ~i.0.d.N(0,02).

Inthis model, y is the freight rate of considered dry bulk shipping markets.
Iny; ¢+ is influenced by the unobserved non-stationary common stochastic trend x;.
This trend is assumed to be a random walk process without drift. The influence
degree of estimated common stochastic trend on each variable is the coefficient y;,
which is the measure for synchronicity. The idiosyncrasy is measured by ¢?. In
particular, this common stochastic trend model decomposes the non-stationary (i.e.,
log-level) data into 1) non-stationary common permanent component (y; X x;)
and 2) stationary transitory idiosyncratic component (e; ;). These equations can be
represented by the following state-space model:

[Measurement Equation]

Jo=H X B+ &, & ~i.i.d.N(O,R),

[Transition (or State) Equation]

Bt= F X Bt_l'l' ‘ﬁ’t, ﬂ’vlldN(O,Q),

where J; = (Iny., ln}"p,t),, Br = x¢, & = (et ep,t)’a U = v,

_ A CZ U _
H = [VC )/p] , R = 0 0_2 , F = 1, Q = 0y.
p
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3.2.2 Dynamic factor model

The second model is a dynamic factor model as follows:

Alny; s = a; X ¢+ e, € ~1.1.d.N(O, al-z),
Ct = @ X Ct—l + vt, vt ~ lldN(0,0"g),

In this model, Alny;, is the difference of logarithmic values of the freight
rates, which is influenced by the unobserved stationary factor c;. This common
factor is assumed to be an autoregressive process of order 1 whose parameter is @.
The influence degree of estimated common dynamic factor on each variable is the
coefficient «;. which is the measure for synchronicity. The idiosyncrasy is
measured by ¢?. In particular, this dynamic factor model decomposes the
stationary (log-differenced) data into 1) stationary common component (a; X c;)
and 2) stationary idiosyncratic component ( e;. ). These equations can be
represented by the following state-space model:

[Measurement Equation]

ye=H X B+ &, é~i.i.d.N(O,R),
[Transition (or State) Equation]
Br=F X Bi_q+ U, Uy ~i.i.d.N(0O, Q),

where ¥; = (Alny Alnyy, (), B = cr, & = (ece €pe)’s V¢ = v,

g2 0
0 o5

HE[aCap]’,RE[ =0, Q = o2.

3.2.3 Unobserved component model

The third model is an unobserved component model as follows:

Iny;: = viX x¢+ a; X ¢, + ey, € ~i.1.d.N(O, o?),
— ;s 2
Xt = Xeoq t Uxp, Uy ~1.0.d.N(0,075,),

— P 2
=0 X g+ Vep, Vep ~1.0.d.N(0,05,.),

In this model, Iny;, is influenced by the unobserved non-stationary
(permanent) stochastic trend x; and stationary (transitory) factor c¢;. The
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permanent trend is assumed to be a random walk process without drift and the
stationary factor to be an autoregressive process of order 1. The influence degree
of estimated common stochastic trend and dynamic factor on each variable are the
coefficients y; and a; which are the measures for synchronicity, respectively.
The idiosyncrasy is measured by o7. In particular, this unobserved component
model decomposes the non-stationary (i.e., log-level) data into 1) non-stationary
common permanent component (y; X x;) and 2) stationary common transitory
component (a; X ¢;) and 3) stationary idiosyncratic component (e; ). These
equations can be represented by the following state-space model:

[Measurement Equation]
Ve=H X B+ &, é~i.i.d.N(O,R),
[Transition (or State) Equation]

Br=F X Be_y + Dy, 0p ~ i.i.d. N(0,Q),

where J; = (Iny.; lnyp,t),aﬁt = (xec) € = (ecr ep,t)’,UNt = (Uxt Ver) s

2 fx 0
n=ly ahre=[5 gbreb de=[T 4l

4. Empirical Results and Discussions

4.1 Data

This study uses the dataset consisting of the daily freight rates of Capesize
and Panamax markets. In particular, as of 2021, one of the representative freight
indicators for Capesize (18,000 DWT) is the STC average of the five routes for
BCI (Baltic Capesize Index) produced by Baltic Exchange and for Panamax
(82,000 DWT) is the 5TC average for BPI (Baltic Panamax Index). These data are
all spot rates representing the current price for transporting dry bulk cargoes. The
sample period ranges from 11™ November 2017 to 20" May 2021. So, the number
of observations is 885.
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Table 2. Summary of Dataset

= Capesize Panamax
_— . Average of the 5 T/C Average of the 5 T/C
Definition of variable Routes for BCI Routes for BPI-82
Sample period 11" November 2017 to 20" May 2021
Number of observations 885

Source: Clarksons

Figure 2 shows the movements of the Capesize STC and Panamax 5TC
averages. As seen in this figure, there is some high correlations. The correlation is
0.68 in the level case and 0.30 in the log-difference case (Table 3). In addition, the
determination coefficient (R?) of the regression from Panamax variable on
Capesize variable is 0.88, which means that the two variables are highly correlated.

Figure 2. Movements of Capesize 5TC and Panamax 5TC Averages
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Cape seese Panamax

Source: Clarksons

Table 3. Descriptive Statistics

- Capesize Panamax
Mean 16,960 12,740
Level Standard deviation 8,544 4174
Correlation 0.68
Mean 0.0004 0.0008
Log-differenced Standard deviation 0.0651 0.0250
Correlation 0.30
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All the values of original data are transformed into natural logarithms.
Table 4 shows the unit root test results for checking the stationarity of the variables.
For the log-level data, the null hypothesis is that a unit root exists in the case
without a constant or trend. If it cannot be rejected at some significance level, then
this means that the log-level variables are likely to be non-stationary. This non-
stationarity enables us to adopt the stochastic permanent trend model. In addition,
for the log-differenced data, the null hypothesis of the existence of unit root in the
case without a constant or trend can be rejected at 1% significance level. This
means that log-differencing the non-stationary variables makes them stationary.
Therefore, this paper uses these stationary variables in the dynamic factor model.

Table 4. Results of unit root test for the log-level and log-differenced data

Log-level t-value -0.045

Capesize p-value 0.667
Log-differenced t-value ~14.742
p-value 0.000***

Log-level t-value 0.318

p-value 0.777

Panamax

Log-differenced tvalue ~10.441
p—value 0.000***

Note: 1) *, ** *** indicate significance at 10%, 5%, 1% level, respectively.

2) The t-statistic refers to the Augmented Dickey-Fuller test statistic. Refer to Dickey and Fuller
(1979, 1981).

3) For the log-level and log—differenced data, the test does not have a constant or trend.

4) The p-value implies MacKinnon’s (1996) one-sided p-value.

5) The values less than 1/1000 are dropped.

In order to apply the “common” stochastic trend model, there should be a
cointegration relationship between the variables, the existence of which implies
there is a common non-stationary stochastic trend. Table 5 shows that there is a
cointegration relationship as predicted by the aforementioned structural
characteristics of Capesize and Panamax freight markets. Its p-value is small
enough to infer that there would be a cointegration relationship.

Table 5. Results of Cointegration Tests

= Trace statistic p—value
Number of cointegration Relationship: none 22.053 0.028**
Number of cointegration Relationship: at most 1 4,965 0.287
Cointegrating vector [1 S ¢] such that
Cea [1-1.826 7.603]
[T B« [Pt 1l)

Note: 1) ** indicate significance at 5% level.

2) For the explanation of the trace statistic, refer to Johansen (1995).

3) The p-value means MacKinnon, Haug and Michells (1999) one-sided p-value.
4) The values less than 1/1000 are dropped.
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4.2 Estimation results and discussions

Table 6 shows the estimation result of common stochastic trend model. For
the normalization of model, the variance of the shocks in the state equation o2 is
set to be 0.01. Similar to Ko (2010b, p.397), the influence coefficients are
statistically significant. It is notable that the variance of idiosyncratic component
in Capesize market (62) is very close to zero, which means that the unobserved
common stochastic trend is estimated as close to the dynamics of Capesize variable.
However, the two synchronicities of Capesize and Panamax (y, and y,) are very
similar.

Table 6. Estimation Result of Common Stochastic Trend Model

Iy;s = vi X x¢ + e, €p ~i.i.d. N(0,67)

X = Xe_q + Vg, Ve ~1.1.d.N(0,02)
= Estimate Standard error
Ye 0.659*** 0.015
Yo 0.645*** 0.015
a? 0.000 -
o5 0.203 -

Note: *** indicate significance at 1% level.

Table 7 shows the estimation result of dynamic factor model. For the
normalization of model, the variance of the shocks in the state equation ¢ is set
to be 0.0001. As the same as the common stochastic trend model, the two
synchronicities of Capesize and Panamax (a. and a,) are very similar. However,
the variance of idiosyncratic component in Panamax market (aﬁ) is very close to
zero, which means that the unobserved dynamic factor is estimated as close to the
dynamics of Panamax variable. In addition, it is notable that the persistence degree
of the autoregressive process of unobserved dynamic factor, @ is 0.866, which is
lower than in the unobserved component model of Table 8. However, the value of
0.866 means that the yesterday’s common factor influences today’s factor by this
magnitude, 0.866.
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Table 7. Estimation Result of Dynamic Factor Model

Alny;s = a; X ¢, + ey, €y ~i.i.d.N(0,07)
¢t =0 X cooq + Vg, Ve ~i.i.d.N(0,02)

- Estimate Standard error
(0] 0.866*** 0.014
a. 0.832%** 0.006
a, 0.961*** 0.005
a? 0.004 -
o5 0.000 -

Note: *** indicate significance at 1% level.

Based on the results of Table 6 and Table 7, this paper constructs the
unobserved component (permanent trends plus transitory cycles) model as a
synthesizing model of common stochastic trend and dynamic factor models. That
is, this paper recommends the use of the unobserved component (permanent trends
plus transitory cycles) model rather than the separate uses of common stochastic
trend model and dynamic factor model. Its estimation result is shown in Table 8.
For the normalization of model, the variances of the shocks in the state equation
oz, and of. issettobe 0.0001, respectively. All the measures of synchronicities
of common stochastic trend and dynamic factor (., ¥p, @, and @) are very
significant. In addition, it is notable that the persistence degree of the
autoregressive process of stationary factor (@) is 0.989, which is higher than simple
dynamic factor model in Table 7. However, the variance of idiosyncratic
component in Panamax market (Gg) is very close to zero.
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Table 8. Estimation Result of Unobserved Component Model

Iny;, = yi X X+ a; X ¢, + e, e, ~i.i.d.N(0,07)
Xe = Xpq + Uyg, Ugr ~ i.1.d.-N(0,02,)
=0 X g+ Uy, Vep ~i.0.d.N(0,02,)

- Estimate Standard error
(0] 0.989%*** 0.001

Ye 0.9371*** 0.007

Yp 0.927*** 0.008

a. 0.984*** 0.004

a, 0.823*** 0.014

al 0.188 -

o5 0.000 -

Note: *** indicate significance at 1% level.

Based on the estimation result of Table 8, we can estimate the unobserved
stochastic trend and cyclical factor. This paper calculates the so-called smoothed
estimates of these two unobserved variables by using the full sample information
and corresponding smoothing algorithm (see Kim and Nelson, pp.27-28), which is
shown in Figure 3. As shown, the permanent trend (x;) and transitory factor (c;)
move together.

Figure 3. Evolutions of Stochastic Trend and Cyclical Factor
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Note: x_t is the permanent trend and c_t is the transitory factor.
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As discussed in Ko (2010a), the unobserved component model may suffer
from parameter instability problem. Figure 4 to Figure 6 show the evolutions of
the parameter estimates, rolling the estimation in the way, in which the sample
consists of 12 months (one year) and thus depleting the first observation and adding
the new last one. The choice of one year as the period of parameter rolling
estimation is due to the fact that there is seasonality concern in more frequency
cases, e.g., quarterly, monthly, etc. Overall, there seems to have been parameter
instability. According to Stock and Watson (2016), in coping with this parameter
instability, there could be two different approaches. First is to incorporate the break
times in the considered model and another is to model time-varying parameters
structure.

Figure 4. Evolutions of @, y., and v,

1.000
0.980
0.960
0.940
0.920
0.900
0.880
0.860

18-11-1 1931 1971 19-11-1 2031 20-71 20-11-1 2131

- = phi gamma_C ---ee- gamma_P
Figure 5. Evolutions of a. and a,

1.200
B
0.800 " &
0.600
0.400
0.200

R n

18-11-1 1931 1971 19-11-1 2031 2071 20111 2131

alpha_C ------ alpha_P

38  KMI International Journal of Maritime Affairs and Fisheries



Figure 6. Evolutions of ¢ and o}
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5. Conclusions

Based on the data of dry bulk shipping markets, this paper considers the
three dynamic linear models such as common stochastic trend, dynamic factor, and
unobserved component models by using state-space approach. All these dynamic
linear models enable us to analyze the synchronicity and idiosyncrasy in the
Capesize and Panamax freight markets in a coherent and efficient way. In particular,
an unobserved component model, which incorporates the common stochastic trend
and dynamic factor models, is proposed as a synthesizing approach. Using this
unobserved component model, we can estimate the unobserved stochastic trend
and dynamic factor via the Kalman filter and smoothing filter. This empirical
investigation will help for the participants in dry bulk shipping markets to enhance
the management efficiency of their revenues and market risks. In addition, this
paper discusses the parameters instability problem by rolling the estimations
whose sample consists of one year daily observations.

There remain three avenues for future research. First, based on the
statistical significance of the dynamic linear models proposed in this paper (esp.,
unobserved component model), it will be possible to apply them to the more
practical exercises, for example, forecasting the future rates. One of the causes of
forecasting improvement would be the decomposition into the permanent and
transitory components. More is there transitory elements, more successful is the
forecasting. This is from the fact that by definition, the transitory components have
a tendency to regress to the stationary expected value. That is, this tendency makes
predictability. In contrast, the permanent components with random walk process,
by its nature, are hard to predict. In other words, if we measure the transitory
components, whether common or idiosyncratic, then by using this information, we
can forecast the future direction of the considered variable conditioning on the
recent information.
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Second, the parameter instability shown in Figures 4-6 should be studied.
This paper recommends that the first step is to model the variation of parameter
values as an evolving process over time and, the second step is to incorporate break
points if there is sudden change of parameter values. However, if it is
recommended to model these breaks, state-space model with Markov switching
regimes would be an excellent method, whose estimation can be done efficiently
via the Kim filter (see Kim, 1994 and Kim and Kang, 2019).

Third, it would be promising to investigate more structural characteristics
of dry bulk shipping markets based on the reduced-form analyses of this paper. If
the above second future research about the structural breaks in parameter values
would provide some acceptable estimates on the break timings, then the
comparisons among the different regimes would enable us to more understand the
relevant markets. This enhancement of knowledge on the market dynamics will
help the participants in dry bulk shipping markets to manage their revenues, cost,
or market risks.

As a final remark, the recommended model for the dry bulk shipping freight
rate movements by using some synthesizing unobserved component model with
time-varying coefficients can be a good indicator for the decision making on the
chartering strategies of shipowners or charterers. Furthermore, more investigation
of structural characteristics of dry bulk shipping markets based on this model could
yield fruitful information for the market participants and relevant policy makers.
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Appendix. Basic understanding of the state-space model

We see the world. Further we can measure many things, whether they are
physical or social. However, when measuring it, we encounter some uncertainties.
State-space model and its estimation algorithm provide us with a powerful tool to
deal with these uncertainties. In particular, there are numerous examples of
unobserved important variables in social sciences. For example, in economics, the
unobserved potential GDP (Gross Domestic Products) should be estimated from
the observed GDP. The natural rate of unemployment is also an unobserved
variable to be estimated from the observed unemployment data.

Suppose that the unobserved variable(s) is defined as f;. We call this as
the state variable in the sense that 8, represents the hidden state of the considered
world at the time . Next, this state variable determines (or influences) the observed
variable, y,. This determination mechanism is modeled as y, = H f;. However,
due to some causes such as measurement errors (E; denoted in the below equation),
we can state this mechanism as an uncertain regression equation as follows:

[Measurement Equation]

ye = H B + E;.

The above equation is called as the “measurement equation”, which links
the unobserved state variable [5; with the observed variable y,, through the
coefficient H, including the measurement error E;.

However, the state-space model incorporates the hidden dynamics of the
state variable(s). Typically, this dynamics is assumed to have an autoregressive
process of order 1 (hereafter AR(1)). Though not shown in detail, any
autoregressive process of k orders (k=2, 3, 4, ...) can be represented by the AR(1)
process. That is, the state variable is governed by the following state equation (or
transition equation) with the form AR(1):

[State (or Transition) Equation]
Bt = FPr-1+ Vt.

The parameter(s) which governs the dynamics of state variable(s) is F.

The parameters can be estimated by the maximum likelihood estimation
and, at the same time, the hidden state variable(s) are estimated through the
Kalman filter and smoothing algorithm. For more technical explanations for its
underlying idea and estimation, refer to Kim and Nelson (1999).
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