
KMI International Journal of Maritime Affairs and Fisheries Volume 12 Issue 2 December 2020 pp. 001-020

Application of Parallel Processing Techniques
to Satellite Ocean Color Data Processing

Jae-Moo Heo* ∙ Hyun Yang** ∙ Young-Je Park*** ∙ Hee-Jeong Han****

ABSTRACT

Recent advances demand that remote-sensing satellites efficiently process
massive amounts of ocean color data. This paper compares the open multi-processing
(OpenMP), the open computing language (OpenCL), the Message Passing Interface
(MPI), the hybrid MPI/OpenMP, and the hybrid MPI/OpenCL in the parallel
implementation of ocean color processing algorithms using data from the
Geostationary Ocean Color Imager (GOCI), which is the first ocean color remote
sensor operated in geostationary orbit. Since 2010, GOCI has observed ocean color
around the Korean Peninsula and has generated hundreds of terabytes of big data.
When any of the data-processing algorithms are updated, all preexisting data is
required to be reprocessed, which can take hundreds of days because GOCI data are
currently processed sequentially. Therefore, we attempted to develop an efficient
parallel processing methodology for GOCI data. We tested well-known GOCI data-
processing algorithms, like the chlorophyll (CHL) and total suspended solid (TSS)
concentration estimation algorithms, using a cluster system. This cluster uses the Red
Hat Linux operating system with two Intel Xeon 8-core processors (CPU), an AMD
Radeon HD 7970 (GPU), and InfiniBand 4x QDR (network). As a result of this study
we were able to improve the GOCI ocean color algorithms' processing speeds for
OpenMP, OpenCL, MPI, hybrid MPI/OpenMP, and hybrid MPI/OpenCL by 3.92,
2.56, 2.51 3.27, and 2.05 times, respectively, than that of when we run the data
sequentially. Moreover, we confirmed that the OpenMP programming model is the
most useful for real-time processing GOCI data, which involves large amounts of
input data and relatively simple formulas. Also, the vast number of computational
nodes helps reduce the time taken to reprocess all data.

Key words: OpenMP, OpenCL, MPI, GOCI, parallel programming, ocean color data

processing, satellite, big data

* First author, Researcher at National Institute of Environmental Research, Korea, jaemoo@korea.kr
** Senior Research Scientist at Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology,

Korea, yanghyun@kiost.ac.kr
*** Principal Research Scientist at Korea Ocean Satellite Center, Korea Institute of Ocean Science and

Technology, Korea, youngjepark@kiost.ac.kr
**** Corresponding author, Principal research specialist at Korea Ocean Satellite Center, Korea Institute of Ocean

Science and Technology, Korea, han77@kiost.ac.kr

Received 30 Oct. 2020; Received in revised form 21 Nov. 2020; Accepted 20 Dec. 2020

2 KMI International Journal of Maritime Affairs and Fisheries

1. Introduction

The amount of data generated increases with the development of spatial
information acquisition technology, while data analyses are becoming more
complicated with the increasing demand for high-quality spatial information. The
performance of spatial information processing and parallel processing constitutes
an essential solution to this problem.

In almost all data processing systems, execution time is one of the most
important factors to be considered. Several algorithms and techniques to speed up
processing time have been studied in many fields (Chen and Chen, 2011; Ehsan
and Malehmir, 2012; Molnar et al., 2020). Especially in data processing, the two
most important factors to be considered to speed up data processing are the
processor's performance and the algorithm that can efficiently process data (Chen
and Chen, 2011). Multi-core processor is commonly used recently, and it is easy
to parallelize the process of data processing algorithm because of repeatedly
using the same command for the sequential structure. Therefore, it is possible to
take advantage of multi-core processor to parallelize the data processing
algorithm.

The Geostationary Ocean Color Imager (GOCI) is mounted on a
Communication Ocean and Meteorological Satellite (COMS) that was launched
from French Guiana in June 2010. It is the world's first geostationary ocean color
satellite and operates at an altitude of 35,789 km. Its primary purpose is
monitoring the marine environment around the Korean peninsula (Ryu et al.,
2012). The GOCI provides ocean color data with a spatial resolution of 500 m at
hourly intervals up to 8 times a day, allowing observations of short-term changes
in the Northeast Asian region. The GOCI Data-Processing System (GDPS) (Ryu
et al., 2012), which provides specialized data-processing software for GOCI, was
developed for real-time generation of various products.

The Korea Ocean Satellite Center (KOSC) of the Korea Institute of
Ocean Science and Technology (KIOST), which manages GOCI, plays a role in
the reception, processing, storage, and distribution of GOCI ocean color data
(Yang et al., 2014). Since 2010, hundreds of terabytes of ocean color big data
have been acquired from around the Korean Peninsula. When a data-processing
algorithm is updated, all the data needs to be reprocessed by the updated
algorithm. This takes hundreds of days because GOCI data are currently
processed in sequence. Therefore, introducing a parallel processing system for
efficient processing and reprocessing of satellite ocean color data is required.

This paper evaluated the most suitable parallel processing methodology
for GOCI data. An analysis of parallel processing techniques proposes an
efficient GOCI data-processing approach and substantially reduces GOCI data
processing execution time. Open multi-processing (OpenMP) is one of the best-
known parallelism methods. This technique takes advantage of multi-core

Application of Parallel Processing Techniques to Satellite Ocean Color Data Processing 3

processors with a shared memory system and enables parallel processes in C/C++
and FORTRAN. Sequential process can be parallelized through the "#pragma
omp" pre-processing directive (Shen and Zhang, 2013). Open computing
language (OpenCL) and compute unified device architecture (CUDA) are
recently proposed methods. These methods use graphic processing unit (GPU)
cores as the processing elements (PE) in an Advanced Micro Devices (AMD)
GPU with tens to hundreds of independent floating point unit (FPU) and
arithmetic logic unit (ALU) coprocessors. They are applied in medical image
processing (Chen and Chen, 2011), geology (Ehsan and Malehmir, 2012), and
meteorology (Molnar et al., 2010). The most popular GPU programming model
is CUDA, a parallel programming system using GPUs manufactured by NVIDIA.
However, CUDA1 was not designed for a heterogeneous system made with
components from multiple vendors. In comparison, the OpenCL2 programming
model, a cross-platform developed by the Khronos Group (Beaverton, OR, USA),
enables parallel processing in a heterogeneous system. The Message Passing
Interface (MPI), a message-passing model for distributed memory systems, is the
de facto standard for vendors, developers, and user committees and was
developed to support parallel programming libraries. MPI3 defines the functions
required for communication between the nodes used by most clusters. Each node
accesses solely its local memory and nodes are connected to other nodes via the
interconnection network. Recently, multi-core CPUs with from two to as many as
eight cores have become predominant. A method that uses a hybrid MPI/OpenMP
model has become common in multi-core CPU-equipped clusters and has been
the subject of several studies (Gorobets, Trias and Oliva, 2013; Wan and Liu,
2013).

This paper describes the parallelization methods used for GOCI data
processing with the parallel programming models OpenMP, OpenCL, MPI,
Hybrid MPI/OpenMP, and Hybrid MPI/OpenCL. It analyzes and compares the
performance of two GOCI ocean color algorithms using parallelization technique.
Section 2 introduces the GOCI ocean color algorithms used to analyze the
parallel processing performance, and Section 3 presents algorithm I/O data and
describes the algorithms' parallelization methods. Section 4 presents the
experimental results derived using the proposed methods and analyzes each
technique-specific algorithm's performance time and improvement. Finally, we
conclude our research in Section 5.

1 NVIDIA CUDA. http://developer.nvidia.com/object/cuda.html/
2 OpenCL. http://www.khronous.org/opencl/
3 OpenMPI. http://www.open-mpi.org/

4 KMI International Journal of Maritime Affairs and Fisheries

2. GOCI Data Processing Algorithms

The GOCI acquires ocean color image data at hourly intervals up to 8
times a day, daily from 09:15 until 16:45, to monitor the marine environment in
near real-time. The GOCI analyzes eight bands centered on 412, 443, 490, 555,
660, and 680 nm in the visible light range and 745 and 865 nm in the near-
infrared range (Ryu et al., 2012). Figure 1(a) shows a color image made by
combining the red, green, and blue images centered on 680, 555, and 412 nm,
respectively. At 130°E, 36°N, it has a spatial resolution (GSD) of less than 500 m.
The GOCI observation area of 2,500 × 2,500 km covers Korea, Japan, the eastern
coast of China, and parts of Taiwan's northern coast.

The raw data obtained from GOCI is digitized via 12-bit depth
quantization. The digital data are converted into two-dimensional radiance data
consisting of 31,648,395 pixels (5567 × 5685 pixels) through geometric
correction (Han et al., 2010). Since this is two-dimensional radiance data, the
data for each of the eight bands constitute one set. This set is called level-1 data,
and Figure 1(b) shows an example.

In general, more radiation is detected from areas covered by land and
cloud, while less is detected from sea areas (Ahn et al., 2012). In processing the
GOCI data, the radiance data of each band included in level-1 are used as input
data for processing algorithms such as the chlorophyll concentration (CHL) and
total suspended solid concentration (TSS) estimation algorithms after the
atmospheric correction (Ahn et al., 2012) thus these are called level-2 data. In
addition, combinations of level-2 data obtained eight times a day are used to
produce level-3 data, such as the ocean primary production (PP) and water
current vectors (Yang et al., 2014). We choose the algorithms which are well-
known in the ocean remote sensing community and used in the GOCI data
processing system. These data are essential for monitoring ocean environments.

In this paper, we tested the chlorophyll concentration (CHL) and total
suspended solid concentration (TSS) estimation algorithms, using the ocean
chlorophyll 2-band (OC2) and the Yellow Sea Large Marine Ecosystem (YSLME)
schemes (Siswanto et al., 2011). The CHL algorithm calculates the total amount
of chlorophyll pigment contained in the plankton present in seawater. To compare
the computational complexity and difference in the amount of input data between
algorithms, the OC2 algorithm, which inputs two remote-sensing reflectances
(Rrs) data, was selected as below

𝐶𝐶𝐶𝑂𝑂2 = 𝑒0 + 10𝑒1+𝑒2×𝑅+𝑒3×𝑅2+𝑒4×𝑅3 (1)

𝑅 = 𝑙𝑙𝑙10 �

𝑅𝑟𝑟(490)
𝑅𝑟𝑟(555)� (2)

Application of Parallel Processing Techniques to Satellite Ocean Color Data Processing 5

where e is the coefficient value, and Rrs(490) and Rrs(555) are Rrs data at
490 nm and 555 nm wavelengths, respectively.

Likewise, the KOSC-TSS algorithm which inputs a single Rrs data and
determines the weight of total suspended solid per unit volume of seawater was
selected as below

𝑇𝑇𝑇 = 𝑐0 × 𝑅𝑟𝑟(555)𝑐1 (3)

where c is the coefficient value and Figure 2 shows an example of the

level-2 data in (a) CHL and (b) TSS data.

Figure 1. (a) A colored image and (b) level-1 radiance data obtained
with GOCI on 2 September 2015

Figure 2. (a) Chlorophyll concentration (CHL) and (b) total suspended solid (TSS) level-2 data
obtained with GOCI on 2 September 2015

6 KMI International Journal of Maritime Affairs and Fisheries

3. Experimental Results

This paper checked the processing time required to execute each parallel
processing model by recording the start and the end times for File I/O, data
transmission, and algorithm calculation. We used the "gettimeofday" library
function to measure the processing time. The processing time included the data
transmission time before calling the "clEnqueueNDRangeKernel" OpenCL API
function for the OpenCL model. We also used the "clGetEventProfilingInfo"
function to measure the time that a kernel spent in the command queue and
included it in the time for actual algorithm calculation. For the MPI model, we
defined the transmission time as the total time for data transmission from the
master node to the last slave node.

The CHL algorithm uses the Rrs data of Band 3 (443 nm) and Band 4
(555 nm) as input data and the TSS algorithm uses the Rrs data of Band 4
(Siswanto et al., 2011; Min et al., 2013). Each of the binary Rrs files is the same
size as the GOCI level-1 data, i.e., about 130 MB (width × height × size of float
type or 5567 × 5685×4). The experimental results included the total processing
time for each parallel processing model, including the algorithm calculations, file
I/O, and data transmission.

The results showing in the figures in section 3 show the total execution
time of each parallel processing model in seconds' level. These figures provide
the optimal condition information of each parallel processing model for CHL,
TSS processing. It is important to find the optimal number of threads, the optimal
number of work groups, the optimal number of nodes for OpenMP, OpenCL,
MPI, and the hybrid MPI model.

3.1 OpenMP

In the performance of OpenMP model, it is important to find the optimal
number of threads. There is a correlation between core and thread (Shen and
Zhang, 2013). The ocean color data must be divided so that the data processed by
each core do not overlap. In this study, one computing node is equipped with two
8-core processors, for a total of 16 physical cores and 32 logical cores. When the
process was divided into 32 threads using OpenMP, the best result was 1.27
seconds for the CHL algorithm and 1.04 seconds for the TSS algorithm (Figure
3). A single core must process approximately 4 MB, i.e., (total amount of GOCI
ocean color data) / (number of cores).

Application of Parallel Processing Techniques to Satellite Ocean Color Data Processing 7

Figure 3. Total execution time of the OpenMP model

3.2 OpenCL

Using the OpenCL model, it is essential to find the optimal number of
work groups based on one local work group's size and the size of one work item.
Let's give more work to one work item and reduce the number of total work items.
We can reduce the wavefront occupancy because one work item requires a fixed
number of registers, while the advantage of reducing the overhead is related to
running the kernel (Pennycook et al., 2013). However, the processing time of the
GOCI algorithm using the GPU was short. Consequently, it was less useful to change
the number of work items. Therefore, we set the number of work items to equal the
amount of GOCI data size, i.e., the total number of work items = 5567 × 5685.

We also need to consider the size of the local GPU memory. If one work
group has too many work items because the number of work groups is small, not
all the data for the work items will go into the local memory at once and
occupancy will be reduced. Conversely, if one work group has too few work
items, it is impossible to take advantage of the local memory and it generates a
local memory area that is not used. Therefore, performance is substantially based
on the size of the work groups and local memory (Pennycook et al., 2013).
Generally, the size of the registers and local memory to be used by threads is
limited, because of the influence of the hardware resources. In our experimental
environment, the maximum size for a single work group is 256 in GPU
specifications. When we increased the size of the local work group to 256, the
total processing time decreased. When there were 256 work groups in the
OpenCL model, the best result was 1.95 seconds for the CHL algorithm and 1.90
seconds for the TSS algorithm (Figure 4). The amount of data that a single work
group had to process was approximately 0.5 MB, i.e., (the number of total work
items) / (the number of work groups).

8 KMI International Journal of Maritime Affairs and Fisheries

Figure 4. Total execution time of the OpenCL model

3.3 MPI

The ocean color data should be divided so that there is no overlap in the
data processed by each node. The amount of data that a single core has to process
is (amount of GOCI ocean color data) / (number of nodes). In the MPI cluster, a
network bottleneck may arise when the nodes increase (Wolf and Mohr, 2003).
For the CHL algorithm, the best result was 1.87 seconds when MPI divided the
process into 16 nodes; for the TSS algorithm, the best result was 1.54 seconds
when MPI divided the process into 10 nodes (Figure 5). For the two algorithms,
each node processed approximately 13 MB and 8 MB, respectively.

Figure 5. Total execution time of the MPI model

Application of Parallel Processing Techniques to Satellite Ocean Color Data Processing 9

3.4 Hybrid MPI/OpenMP

Like the MPI model, the ocean color data have to be divided so that there
is no overlap in the data processed by each node, and the data assigned to each
node have to be divided among the core processors. With the OpenMP model, 32
threads were allocated to each node. Experimentally, on adjusting the number of
nodes, if there were more than five nodes, a network bottleneck caused by the use
of shared memory occurred with MPI and OpenMP (Shen and Zhang, 2013; Wolf
and Mohr, 2003). It showed a marginal improvement in the performance
compared to few nodes. When the process was divided into 128 (4 nodes through
MPI and 32 threads through OpenMP), the best result was 1.97 seconds for the
CHL algorithm and 1.57 seconds for the TSS algorithm (Figure 6). A single core
had to process approximately 0.1 MB, i.e., (amount of GOCI ocean color data) /
(number of cores × number of nodes).

Figure 6. Total execution time of Hybrid MPI/OpenMP model

3.5 Hybrid MPI/OpenCL

Like the MPI model, the ocean color data should be divided so that a
GPU processed no overlap in the data processed by each node and the data
assigned to each node. Based on the OpenMP and OpenCL models results, each
node was assigned 32 threads and 256 work groups. Experimentally, on adjusting
the number of nodes, the products were similar to those with the Hybrid
MPI/OpenMP model. If there were more than five nodes, the exchange of
memory between the CPU and GPU resulted in a network bottleneck caused
using memory shared by MPI and OpenCL (Gorobets, Trias and Oliva, 2013;
Pennycook et al., 2013). It showed a marginal performance improvement. When
the Hybrid MPI/OpenCL model had 256 work groups and four nodes, the best
result was 2.43 seconds for the CHL algorithm and 2.35 seconds for the TSS

10 KMI International Journal of Maritime Affairs and Fisheries

algorithm (Figure 7). The amount of data that a single work group had to process
was approximately 0.13 MB, i.e., (total number of work items) / (number of work
groups × number of nodes).

Figure 7. Total execution time of Hybrid MPI/OpenCL model

4. Discussion

When comparing the CHL and TSS algorithms' execution times using

parallel processing, both algorithms showed similar patterns for each parallel
programming model. The TSS algorithm has only one binary file for input data
and consistently took less time than the CHL algorithm, which has two binary
files for file I/O and data transmission. However, the two algorithms' differences
were not significant because the speed of a network with InfiniBand is fast.
Based on the sequential model, the CHL and TSS algorithm's calculation time
was 4.05 and 1.81 seconds, respectively (Table 1). The CHL algorithm's
execution time, which has greater computational complexity, was approximately
2.24 times that of the TSS algorithm.

We compared the performance of each parallel programming model with
sequential processing. OpenMP was carried out with 32 threads, but we did not
see the ideal 32-fold speedup in performance because the 32 logical cores are
represented by 16 physical cores. The actual speedup was close to a 16-fold
increase. With the OpenCL model, the CHL and TSS algorithms' speedup was
45.01 and 22.58 times, respectively (Table 2). There were several reasons for
these results. The GPU manufactured by AMD contains 2,048 processing
elements (PE) and 64 wavefronts. There were also different specifications for the
CPU and GPU cores used in the experiment.

Application of Parallel Processing Techniques to Satellite Ocean Color Data Processing 11

When we measured the time for algorithm calculation separately in the
MPI model's distributed memory environment, the performance of the
parallelism model is expected to equal the number of nodes. However, the MPI
model's performance was 15.89 times that for the CHL algorithm and 9.92 times
that for the TSS algorithm when the process involved 16 and 10 nodes,
respectively (see Figure 5). The reason for the difference from the ideal is the
overhead of calling MPI functions. For the Hybrid MPI/OpenMP and Hybrid
MPI/OpenCL models, the two algorithms' performance was approximately four
times compared with the OpenMP and OpenCL models, respectively. Therefore,
the experiment showed that the parallelism of the algorithm worked successfully
in a heterogeneous system.

Note that the speedup of the OpenMP model was the most considerable
overall in this study. Nevertheless, the Hybrid MPI/OpenCL model showed a
130-fold speedup in the algorithm calculation time. The OpenMP model
improved 3.92 times for the CHL algorithm and 2.56 times for the TSS algorithm.
In the Hybrid MPI/OpenCL model, the overhead took about 1.5 seconds for file
I/O and data transmission. This process can only be performed sequentially. The
time for algorithm calculation was an almost negligible proportion of the entire
process. As a result, the Hybrid MPI/OpenCL model's total speedup was small
despite the considerable speedup in the algorithm calculation time. Likewise, the
overhead was relatively more extensive than the reduced execution time due to
the parallelization of algorithm calculation in the OpenCL and MPI models. If
there is a complex algorithm to consume more than 1 minute, the Hybrid
MPI/OpenCL model is the best parallel processing choice.

Table 1. The performance time of each parallel programming model

Programming
Model

Sequential
OpenMP

(32 threads)
OpenCL MPI

MPI/OpenMP
(4 nodes

/32 threads)

MPI/OpenCL
(4 nodes

 32 threads)

File I/O &
Data

Transmission

CHL 0.94 1.01 1.86
1.61

(16 nodes)
1.47 2.41

TSS 0.86 0.93 1.82
1.36

(10 nodes)
1.36 2.33

Algorithm
Calculation

CHL 4.05 0.26 0.09 0.26 0.05 0.02

TSS 1.81 0.11 0.08 0.18 0.02 0.01

Total (Sec)
CHL 4.99 1.27 1.95 1.87 1.52 2.43

TSS 2.67 1.04 1.90 1.54 1.38 2.35

12 KMI International Journal of Maritime Affairs and Fisheries

Table 2. The speedup of each parallel programming model

Figure 8 outlines another aspect of the two algorithms, showing the

speedup in algorithm calculation with the OpenCL and Hybrid MPI/OpenCL
models. The OpenCL model increased the algorithm calculation times of the
CHL and TSS algorithms 45.01 and 22.58 times, respectively. In comparison, the
Hybrid MPI/OpenCL model increased this 169.01 times for the CHL algorithm
and 136.01 times for the TSS algorithm. The large difference in the two
algorithms' results is due to the two algorithms' computational complexity. The
GPU core is less advantageous than the CPU core for higher-order calculations.
However, neither of the algorithms involves higher-order calculations and the
formula of the TSS algorithm is relatively simple. In summary, the TSS algorithm
does not take full advantage of the PEs in the GPU compared with the CHL
algorithm.

Figure 8. The speedup in algorithm calculation

Programming
Model

Sequential
OpenMP

(32 threads)
OpenCL MPI

MPI/OpenMP
(4 nodes

/32 threads)

MPI/OpenCL
(4 nodes

/32 threads)

File I/O &
 Data

Transmission

CHL 1.00 0.93 0.50
0.58

(16 nodes)
0.64 0.39

TSS 1.00 0.93 0.47
0.63

(10 nodes)
0.63 0.37

Algorithm
Calculation

CHL 1.00 15.58 45.01 15.89 73.67 169.09

TSS 1.00 15.92 22.58 9.92 72.26 136.01

Total (Sec)
CHL 1.00 3.92 2.56 2.67 3.27 2.05

TSS 1.00 2.56 1.40 1.73 1.93 1.14

Application of Parallel Processing Techniques to Satellite Ocean Color Data Processing 13

5. Conclusion

This paper introduced several parallel processing models and compared

how parallel processing techniques reduce the processing time of GOCI data, the
world's first ocean color remote sensor operated in a geostationary orbit. We
examined the performance of the CHL and TSS concentration estimation
algorithms. With the OpenMP model, the best improvement was 3.92 times for
the CHL algorithm and 2.56 times for the TSS algorithm. The performance of the
parallel programming models from the most improved followed in the order of:
OpenMP > Hybrid MPI/OpenMP > MPI > OpenCL > Hybrid MPI/OpenCL.

This study examined basic parallelism using each of the parallel
processing models. In the future, the amount and allocation of CPU and memory
must be analyzed precisely to determine whether it can improve performance
with all the parallelism techniques. It is also necessary to optimize and vectorize
the algorithms in the OpenMP model, which performed the best. In addition, the
results of this study were limited to level-2 data. In future research, it is desirable
to establish parallel processing methods for level-1 and level-3 data to reduce the
execution time for GOCI data processing markedly.

Recently, GOCI-II (Han et al., 2017, Han et al., 2019), the successor of
GOCI, was launched, and has begun servicing data. We expect this study's results
to help in real-time processing of GOCI-II data, which have superior
spatiotemporal resolution than GOCI data. Furthermore, we believe that the
results of this study will contribute to the efficient processing of ocean satellite
big data.

Acknowledgments

This research was supported by the "Development of the integrated data

processing system for GOCI-II" and the "Technology development for Practical
Applications of Multi-Satellite data to maritime issues" funded by the Ministry of
Oceans and Fisheries, Korea. This research was also supported by the "Operation
in Korea Ocean Satellite Center" funded by the Korea Institute of Ocean Science
and Technology (KIOST).

14 KMI International Journal of Maritime Affairs and Fisheries

Appendix. Algorithm of Parallel Processing Techniques

This study considers three well-known parallel processing techniques -

OpenMP, OpenCL, MPI - and its hybrids to accelerate data processing and
reduce satellite data processing time. This Appendix explains the main concepts
and advantages of each technique shortly.

1. OpenMP

OpenMP refers to a parallel processing method using a CPU with
multiple cores and a shared memory model in a node computer. OpenMP is a
multi-threaded application for parallel programming. It provides a simple and
easy-to-use API. It is easier to implement and debug than other techniques by
using a simple API. We can implement it in a way that divides data and processes
loops in parallel. In the OpenMP programming model (Figure A-1), we
considered an interrelation between core and thread. We can simultaneously
execute the threads as much as the number of cores. Generally, thread number
had better generate as multiple of the number of cores. OpenMP can support
several computing languages like Fortran, C, C++.

Figure A-1. OpenMP Programming Model

GOCI Satellite Data

Application of Parallel Processing Techniques to Satellite Ocean Color Data Processing 15

Figure A-2. OpenMP Processing flow chart

2. OpenCL

OpenCL is a standard parallel programming application and is a cross-
platform model to support both homogeneous systems and heterogeneous
systems. We can program it for various devices such as CPU, GPU, and FPGA.
In the OpenCL programming model (Figure A-3), we generated two programs,
the host program for CPU and the OpenCL program for GPU. We should
consider an interrelation between the size of a local work group and run-time.
GPU's compute unit is similar in meaning to CPU. A local work group is a task
unit inside of 1 computing unit. If we allocate a maximum local work group size
not exceeding the local memory size, the algorithm will perform efficiently.

Figure A-3. OpenCL programming model

16 KMI International Journal of Maritime Affairs and Fisheries

Figure A-4. OpenCL Processing flow chart

3. Message Passing Interface (MPI)

Message Passing Interface (MPI) is a standard that describes the
exchange of information in distributed and parallel processing. Making a node
that has many CPUs and GPUs is difficult. This is because the mainboard
capable of supporting multi CPUs and GPUs is so expensive with a serious
heating problem. So, we considered the MPI model on a cluster system that has
many nodes. In the MPI programming model (figure A-5), we gave a role to a
master node and slave nodes. The master node manages the whole, and slave
nodes perform each divided task. Then, we considered an interrelation between
the number of nodes and run-time. It has merits and faults. For example, if we
increase the node number, each slave node has a small task, and algorithm
calculation takes short. But, each slave node has to receive data for processing.
So, data transmission takes longer.

Application of Parallel Processing Techniques to Satellite Ocean Color Data Processing 17

Figure A-5. MPI Programming Model

Figure A-6. MPI Processing and Hybrid MPI/OpenMP processing flow chart

4. Hybrid MPI/OpenMP model

The Hybrid MPI/OpenMP model is a combination of MPI and OpenMP.
This model's flow chart is the same as the MPI model because the OpenMP has
no data transmission part.

5. Hybrid MPI/OpenCL model

The Hybrid MPI/OpenCL model is combined with MPI and OpenCL.
This model will be decisive to massive data batch processing using a giant cluster.

18 KMI International Journal of Maritime Affairs and Fisheries

Figure A-7. Hybrid MPI/OpenCL Processing flow chart

Application of Parallel Processing Techniques to Satellite Ocean Color Data Processing 19

References

Ahn, J.H., Park, Y.J., Ryu, J.H., Lee, B., and Oh, I.S. (2012) Development of Atmospheric

Correction Algorithm for Geostationary Ocean Color Imager (GOCI). Ocean
Science Journal 47:247-259.

Chen, Y. and Chen, Y. (2011) Matching of a Huge Set of MR Images with a Parallel
Processing Model. Journal of Medical Systems 35(5):795-800.

Ehsan, S.A. and Malehmir, A. (2012) Re-processing and interpretation of 2D seismic data
from the Kristineberg mining area, northern Sweden. Journal of Applied
Geophysics 80:43-55.

Gorobets, A.V., Trias, F.X., and Oliva, A. (2013) A parallel MPI + OpenMP + OpenCL
algorithm for hybrid supercomputations of incompressible flows. Computer and
Fluids 88:764-772.

Han, H.J., Ryu, J.H., and Ahn, Y.H. (2010) Development the Geostationary Ocean Color
Imager (GOCI) Data Processing System (GDPS). Korean Journal of Remote
Sensing 26(2):239-249. (in Korean with English abstract).

Han, H.J., Yang, H., Heo, J.M., and Park, Y.J. (2017) Systemic Ground-Segment
Development for the Geostationary Ocean Color Imager II, GOCI-II. KIISE
Transactions on Computing Practices, 23(3):171-176.

Han, H.J., Yang, H., Heo, J.M., and Park, Y.J. (2019) Systemic Design and Development
of the Second Geostationary Ocean Color Satellite Ground Segment. KIISE
Transactions on Computing Practices, 25(10):477-484.

Min, J.E., Choi, J.K., Park, Y.J., and Ryu, J.H. (2013) Retrieval of suspended sediment
concentration in the coastal waters of yellow sea from Geostationary Ocean Color
Imager (GOCI). In Proceedings of International Symposium of Remote Sensing
(Tokyo, Japan, May 15-17, 2013), Korean Society of Remote Sensing, pp.809-812.

Molnar, F., Szakaly, T., Meszaros, R., and Lagzi, L. (2010) Air pollution modelling using
a Graphics Processing Unit with CUDA. Computer Physics Communications
181(1):105-112.

Pennycook, S.J., Hammond, S.D., Wright, S.A., Herdman J.A., Miller, I., and Jarvis, S.A.
(2013) An investigation of the performance portability of OpenCL. Journal of
Parallel and Distributed Computing 73:1439–1450.

Ryu, J.H., Han, H.J., Cho, S., Park, Y.J., and Ahn, Y.H. (2012) Overview of geostationary
ocean color imager (GOCI) and GOCI data processing system (GDPS). Ocean
Science Journal 47:223-233.

Shen, H. and Zhang, Y. (2013) Comparison and Analysis of Parallel Computing
Performance Using OpenMP and MPI. The Open Automation and Control
Systems Journal 5:38-44.

Siswanto, E., Tang, J., Yamaguchi, H., Ahn, Y.-H., Ishizaka, J., Yoo, S., Kim, S.-W.,
Kiyomoto, Y., Yamada, K., Chiang, C., and Kawamura, H. (2011) Empirical

20 KMI International Journal of Maritime Affairs and Fisheries

ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and
colored dissolved organic matter absorption coefficient in the Yeloow and East
China Seas. Journal of Oceanography 67(5):627-650.

Wan, J. and Liu, Y. (2013) Hybrid MPI-OpenMP Parallelization of Image Reconstruction.
Journal of Software 8(3):687-693.

Wolf, F. and Mohr, B. (2003) Automatic performance analysis of hybrid MPI/OpenMP
applications. Journal of System Architecture 49:421–439.

Yang, H., Choi, J.K., Park, Y.J, Han, H.J., and Ryu, J.H. (2014) Application of the
Geostationary Ocean Color Imager (GOCI) to estimates of ocean surface currents.
Journal of Geophysical Research: Oceans 119(6):3988-4000.

Yang, H., Oh, E., Han, T.H., Han. H.J., and Choi. J.K. (2014) An Efficient Data
Processing Method to Improve the Geostationary Ocean Color Imager (GOCI)
Data Service. Korean Journal of Remote Sensing 30(1):137-147. (in Korean with
English abstract).

