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ABSTRACT 
 

Recent advances demand that remote-sensing satellites efficiently process 
massive amounts of ocean color data. This paper compares the open multi-processing 
(OpenMP), the open computing language (OpenCL), the Message Passing Interface 
(MPI), the hybrid MPI/OpenMP, and the hybrid MPI/OpenCL in the parallel 
implementation of ocean color processing algorithms using data from the 
Geostationary Ocean Color Imager (GOCI), which is the first ocean color remote 
sensor operated in geostationary orbit. Since 2010, GOCI has observed ocean color 
around the Korean Peninsula and has generated hundreds of terabytes of big data. 
When any of the data-processing algorithms are updated, all preexisting data is 
required to be reprocessed, which can take hundreds of days because GOCI data are 
currently processed sequentially. Therefore, we attempted to develop an efficient 
parallel processing methodology for GOCI data. We tested well-known GOCI data-
processing algorithms, like the chlorophyll (CHL) and total suspended solid (TSS) 
concentration estimation algorithms, using a cluster system. This cluster uses the Red 
Hat Linux operating system with two Intel Xeon 8-core processors (CPU), an AMD 
Radeon HD 7970 (GPU), and InfiniBand 4x QDR (network). As a result of this study 
we were able to improve the GOCI ocean color algorithms' processing speeds for 
OpenMP, OpenCL, MPI, hybrid MPI/OpenMP, and hybrid MPI/OpenCL by 3.92, 
2.56, 2.51 3.27, and 2.05 times, respectively, than that of when we run the data 
sequentially. Moreover, we confirmed that the OpenMP programming model is the 
most useful for real-time processing GOCI data, which involves large amounts of 
input data and relatively simple formulas. Also, the vast number of computational 
nodes helps reduce the time taken to reprocess all data. 
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1.  Introduction 
 

The amount of data generated increases with the development of spatial 
information acquisition technology, while data analyses are becoming more 
complicated with the increasing demand for high-quality spatial information. The 
performance of spatial information processing and parallel processing constitutes 
an essential solution to this problem. 

In almost all data processing systems, execution time is one of the most 
important factors to be considered. Several algorithms and techniques to speed up 
processing time have been studied in many fields (Chen and Chen, 2011; Ehsan 
and Malehmir, 2012; Molnar et al., 2020). Especially in data processing, the two 
most important factors to be considered to speed up data processing are the 
processor's performance and the algorithm that can efficiently process data (Chen 
and Chen, 2011). Multi-core processor is commonly used recently, and it is easy 
to parallelize the process of data processing algorithm because of repeatedly 
using the same command for the sequential structure. Therefore, it is possible to 
take advantage of multi-core processor to parallelize the data processing 
algorithm.  

The Geostationary Ocean Color Imager (GOCI) is mounted on a 
Communication Ocean and Meteorological Satellite (COMS) that was launched 
from French Guiana in June 2010. It is the world's first geostationary ocean color 
satellite and operates at an altitude of 35,789 km. Its primary purpose is 
monitoring the marine environment around the Korean peninsula (Ryu et al., 
2012). The GOCI provides ocean color data with a spatial resolution of 500 m at 
hourly intervals up to 8 times a day, allowing observations of short-term changes 
in the Northeast Asian region. The GOCI Data-Processing System (GDPS) (Ryu 
et al., 2012), which provides specialized data-processing software for GOCI, was 
developed for real-time generation of various products. 

The Korea Ocean Satellite Center (KOSC) of the Korea Institute of 
Ocean Science and Technology (KIOST), which manages GOCI, plays a role in 
the reception, processing, storage, and distribution of GOCI ocean color data 
(Yang et al., 2014). Since 2010, hundreds of terabytes of ocean color big data 
have been acquired from around the Korean Peninsula. When a data-processing 
algorithm is updated, all the data needs to be reprocessed by the updated 
algorithm. This takes hundreds of days because GOCI data are currently 
processed in sequence. Therefore, introducing a parallel processing system for 
efficient processing and reprocessing of satellite ocean color data is required. 

This paper evaluated the most suitable parallel processing methodology 
for GOCI data. An analysis of parallel processing techniques proposes an 
efficient GOCI data-processing approach and substantially reduces GOCI data 
processing execution time. Open multi-processing (OpenMP) is one of the best-
known parallelism methods. This technique takes advantage of multi-core 
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processors with a shared memory system and enables parallel processes in C/C++ 
and FORTRAN. Sequential process can be parallelized through the "#pragma 
omp" pre-processing directive (Shen and Zhang, 2013). Open computing 
language (OpenCL) and compute unified device architecture (CUDA) are 
recently proposed methods. These methods use graphic processing unit (GPU) 
cores as the processing elements (PE) in an Advanced Micro Devices (AMD) 
GPU with tens to hundreds of independent floating point unit (FPU) and 
arithmetic logic unit (ALU) coprocessors. They are applied in medical image 
processing (Chen and Chen, 2011), geology (Ehsan and Malehmir, 2012), and 
meteorology (Molnar et al., 2010). The most popular GPU programming model 
is CUDA, a parallel programming system using GPUs manufactured by NVIDIA. 
However, CUDA1 was not designed for a heterogeneous system made with 
components from multiple vendors. In comparison, the OpenCL2 programming 
model, a cross-platform developed by the Khronos Group (Beaverton, OR, USA), 
enables parallel processing in a heterogeneous system. The Message Passing 
Interface (MPI), a message-passing model for distributed memory systems, is the 
de facto standard for vendors, developers, and user committees and was 
developed to support parallel programming libraries. MPI3 defines the functions 
required for communication between the nodes used by most clusters. Each node 
accesses solely its local memory and nodes are connected to other nodes via the 
interconnection network. Recently, multi-core CPUs with from two to as many as 
eight cores have become predominant. A method that uses a hybrid MPI/OpenMP 
model has become common in multi-core CPU-equipped clusters and has been 
the subject of several studies (Gorobets, Trias and Oliva, 2013; Wan and Liu, 
2013). 

This paper describes the parallelization methods used for GOCI data 
processing with the parallel programming models OpenMP, OpenCL, MPI, 
Hybrid MPI/OpenMP, and Hybrid MPI/OpenCL. It analyzes and compares the 
performance of two GOCI ocean color algorithms using parallelization technique. 
Section 2 introduces the GOCI ocean color algorithms used to analyze the 
parallel processing performance, and Section 3 presents algorithm I/O data and 
describes the algorithms' parallelization methods. Section 4 presents the 
experimental results derived using the proposed methods and analyzes each 
technique-specific algorithm's performance time and improvement. Finally, we 
conclude our research in Section 5. 
 
 
 
 

                                           
1 NVIDIA CUDA. http://developer.nvidia.com/object/cuda.html/ 
2 OpenCL. http://www.khronous.org/opencl/ 
3 OpenMPI. http://www.open-mpi.org/ 
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2. GOCI Data Processing Algorithms  
 

The GOCI acquires ocean color image data at hourly intervals up to 8 
times a day, daily from 09:15 until 16:45, to monitor the marine environment in 
near real-time. The GOCI analyzes eight bands centered on 412, 443, 490, 555, 
660, and 680 nm in the visible light range and 745 and 865 nm in the near-
infrared range (Ryu et al., 2012). Figure 1(a) shows a color image made by 
combining the red, green, and blue images centered on 680, 555, and 412 nm, 
respectively. At 130°E, 36°N, it has a spatial resolution (GSD) of less than 500 m. 
The GOCI observation area of 2,500 × 2,500 km covers Korea, Japan, the eastern 
coast of China, and parts of Taiwan's northern coast.  

The raw data obtained from GOCI is digitized via 12-bit depth 
quantization. The digital data are converted into two-dimensional radiance data 
consisting of 31,648,395 pixels (5567 × 5685 pixels) through geometric 
correction (Han et al., 2010). Since this is two-dimensional radiance data, the 
data for each of the eight bands constitute one set. This set is called level-1 data, 
and Figure 1(b) shows an example. 

In general, more radiation is detected from areas covered by land and 
cloud, while less is detected from sea areas (Ahn et al., 2012). In processing the 
GOCI data, the radiance data of each band included in level-1 are used as input 
data for processing algorithms such as the chlorophyll concentration (CHL) and 
total suspended solid concentration (TSS) estimation algorithms after the 
atmospheric correction (Ahn et al., 2012) thus these are called level-2 data. In 
addition, combinations of level-2 data obtained eight times a day are used to 
produce level-3 data, such as the ocean primary production (PP) and water 
current vectors (Yang et al., 2014). We choose the algorithms which are well-
known in the ocean remote sensing community and used in the GOCI data 
processing system. These data are essential for monitoring ocean environments. 

In this paper, we tested the chlorophyll concentration (CHL) and total 
suspended solid concentration (TSS) estimation algorithms, using the ocean 
chlorophyll 2-band (OC2) and the Yellow Sea Large Marine Ecosystem (YSLME) 
schemes (Siswanto et al., 2011). The CHL algorithm calculates the total amount 
of chlorophyll pigment contained in the plankton present in seawater. To compare 
the computational complexity and difference in the amount of input data between 
algorithms, the OC2 algorithm, which inputs two remote-sensing reflectances 
(Rrs) data, was selected as below 

 
𝐶𝐶𝐶𝑂𝑂2 = 𝑒0 + 10𝑒1+𝑒2×𝑅+𝑒3×𝑅2+𝑒4×𝑅3              (1) 
 
𝑅 =  𝑙𝑙𝑙10 �

𝑅𝑟𝑟(490)
𝑅𝑟𝑟(555)�                                     (2) 
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where e is the coefficient value, and Rrs(490) and Rrs(555) are Rrs data at 
490 nm and 555 nm wavelengths, respectively. 

Likewise, the KOSC-TSS algorithm which inputs a single Rrs data and 
determines the weight of total suspended solid per unit volume of seawater was 
selected as below 

 
𝑇𝑇𝑇 =  𝑐0 × 𝑅𝑟𝑟(555)𝑐1             (3) 
 
where c is the coefficient value and Figure 2 shows an example of the 

level-2 data in (a) CHL and (b) TSS data. 
 
 

Figure 1. (a) A colored image and (b) level-1 radiance data obtained  
with GOCI on 2 September 2015 

 
 

Figure 2. (a) Chlorophyll concentration (CHL) and (b) total suspended solid (TSS) level-2 data 
obtained with GOCI on 2 September 2015 

 

 



 

6   KMI International Journal of Maritime Affairs and Fisheries 

3. Experimental Results 
 

This paper checked the processing time required to execute each parallel 
processing model by recording the start and the end times for File I/O, data 
transmission, and algorithm calculation. We used the "gettimeofday" library 
function to measure the processing time. The processing time included the data 
transmission time before calling the "clEnqueueNDRangeKernel" OpenCL API 
function for the OpenCL model. We also used the "clGetEventProfilingInfo" 
function to measure the time that a kernel spent in the command queue and 
included it in the time for actual algorithm calculation. For the MPI model, we 
defined the transmission time as the total time for data transmission from the 
master node to the last slave node. 

The CHL algorithm uses the Rrs data of Band 3 (443 nm) and Band 4 
(555 nm) as input data and the TSS algorithm uses the Rrs data of Band 4 
(Siswanto et al., 2011; Min et al., 2013). Each of the binary Rrs files is the same 
size as the GOCI level-1 data, i.e., about 130 MB (width × height × size of float 
type or 5567 × 5685×4). The experimental results included the total processing 
time for each parallel processing model, including the algorithm calculations, file 
I/O, and data transmission. 

The results showing in the figures in section 3 show the total execution 
time of each parallel processing model in seconds' level. These figures provide 
the optimal condition information of each parallel processing model for CHL, 
TSS processing. It is important to find the optimal number of threads, the optimal 
number of work groups, the optimal number of nodes for OpenMP, OpenCL, 
MPI, and the hybrid MPI model. 
 
3.1 OpenMP 

In the performance of OpenMP model, it is important to find the optimal 
number of threads. There is a correlation between core and thread (Shen and 
Zhang, 2013). The ocean color data must be divided so that the data processed by 
each core do not overlap. In this study, one computing node is equipped with two 
8-core processors, for a total of 16 physical cores and 32 logical cores. When the 
process was divided into 32 threads using OpenMP, the best result was 1.27 
seconds for the CHL algorithm and 1.04 seconds for the TSS algorithm (Figure 
3). A single core must process approximately 4 MB, i.e., (total amount of GOCI 
ocean color data) / (number of cores). 
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Figure 3. Total execution time of the OpenMP model 

 
 

3.2 OpenCL 

Using the OpenCL model, it is essential to find the optimal number of 
work groups based on one local work group's size and the size of one work item. 
Let's give more work to one work item and reduce the number of total work items. 
We can reduce the wavefront occupancy because one work item requires a fixed 
number of registers, while the advantage of reducing the overhead is related to 
running the kernel (Pennycook et al., 2013). However, the processing time of the 
GOCI algorithm using the GPU was short. Consequently, it was less useful to change 
the number of work items. Therefore, we set the number of work items to equal the 
amount of GOCI data size, i.e., the total number of work items = 5567 × 5685. 

We also need to consider the size of the local GPU memory. If one work 
group has too many work items because the number of work groups is small, not 
all the data for the work items will go into the local memory at once and 
occupancy will be reduced. Conversely, if one work group has too few work 
items, it is impossible to take advantage of the local memory and it generates a 
local memory area that is not used. Therefore, performance is substantially based 
on the size of the work groups and local memory (Pennycook et al., 2013). 
Generally, the size of the registers and local memory to be used by threads is 
limited, because of the influence of the hardware resources. In our experimental 
environment, the maximum size for a single work group is 256 in GPU 
specifications. When we increased the size of the local work group to 256, the 
total processing time decreased. When there were 256 work groups in the 
OpenCL model, the best result was 1.95 seconds for the CHL algorithm and 1.90 
seconds for the TSS algorithm (Figure 4). The amount of data that a single work 
group had to process was approximately 0.5 MB, i.e., (the number of total work 
items) / (the number of work groups). 
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Figure 4. Total execution time of the OpenCL model 

 
 

3.3 MPI 

The ocean color data should be divided so that there is no overlap in the 
data processed by each node. The amount of data that a single core has to process 
is (amount of GOCI ocean color data) / (number of nodes). In the MPI cluster, a 
network bottleneck may arise when the nodes increase (Wolf and Mohr, 2003). 
For the CHL algorithm, the best result was 1.87 seconds when MPI divided the 
process into 16 nodes; for the TSS algorithm, the best result was 1.54 seconds 
when MPI divided the process into 10 nodes (Figure 5). For the two algorithms, 
each node processed approximately 13 MB and 8 MB, respectively. 

 
Figure 5. Total execution time of the MPI model 
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3.4 Hybrid MPI/OpenMP 

Like the MPI model, the ocean color data have to be divided so that there 
is no overlap in the data processed by each node, and the data assigned to each 
node have to be divided among the core processors. With the OpenMP model, 32 
threads were allocated to each node. Experimentally, on adjusting the number of 
nodes, if there were more than five nodes, a network bottleneck caused by the use 
of shared memory occurred with MPI and OpenMP (Shen and Zhang, 2013; Wolf 
and Mohr, 2003). It showed a marginal improvement in the performance 
compared to few nodes. When the process was divided into 128 (4 nodes through 
MPI and 32 threads through OpenMP), the best result was 1.97 seconds for the 
CHL algorithm and 1.57 seconds for the TSS algorithm (Figure 6). A single core 
had to process approximately 0.1 MB, i.e., (amount of GOCI ocean color data) / 
(number of cores × number of nodes). 

 
Figure 6. Total execution time of Hybrid MPI/OpenMP model 

 

3.5 Hybrid MPI/OpenCL 

Like the MPI model, the ocean color data should be divided so that a 
GPU processed no overlap in the data processed by each node and the data 
assigned to each node. Based on the OpenMP and OpenCL models results, each 
node was assigned 32 threads and 256 work groups. Experimentally, on adjusting 
the number of nodes, the products were similar to those with the Hybrid 
MPI/OpenMP model. If there were more than five nodes, the exchange of 
memory between the CPU and GPU resulted in a network bottleneck caused 
using memory shared by MPI and OpenCL (Gorobets, Trias and Oliva, 2013; 
Pennycook et al., 2013). It showed a marginal performance improvement. When 
the Hybrid MPI/OpenCL model had 256 work groups and four nodes, the best 
result was 2.43 seconds for the CHL algorithm and 2.35 seconds for the TSS 
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algorithm (Figure 7). The amount of data that a single work group had to process 
was approximately 0.13 MB, i.e., (total number of work items) / (number of work 
groups × number of nodes). 

 

Figure 7. Total execution time of Hybrid MPI/OpenCL model  

 
 
 

4.  Discussion 

 
When comparing the CHL and TSS algorithms' execution times using 

parallel processing, both algorithms showed similar patterns for each parallel 
programming model. The TSS algorithm has only one binary file for input data 
and consistently took less time than the CHL algorithm, which has two binary 
files for file I/O and data transmission. However, the two algorithms' differences 
were not significant because the speed of a network with InfiniBand is fast. 
Based on the sequential model, the CHL and TSS algorithm's calculation time 
was 4.05 and 1.81 seconds, respectively (Table 1). The CHL algorithm's 
execution time, which has greater computational complexity, was approximately 
2.24 times that of the TSS algorithm. 

We compared the performance of each parallel programming model with 
sequential processing. OpenMP was carried out with 32 threads, but we did not 
see the ideal 32-fold speedup in performance because the 32 logical cores are 
represented by 16 physical cores. The actual speedup was close to a 16-fold 
increase. With the OpenCL model, the CHL and TSS algorithms' speedup was 
45.01 and 22.58 times, respectively (Table 2). There were several reasons for 
these results. The GPU manufactured by AMD contains 2,048 processing 
elements (PE) and 64 wavefronts. There were also different specifications for the 
CPU and GPU cores used in the experiment. 
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When we measured the time for algorithm calculation separately in the 
MPI model's distributed memory environment, the performance of the 
parallelism model is expected to equal the number of nodes. However, the MPI 
model's performance was 15.89 times that for the CHL algorithm and 9.92 times 
that for the TSS algorithm when the process involved 16 and 10 nodes, 
respectively (see Figure 5). The reason for the difference from the ideal is the 
overhead of calling MPI functions. For the Hybrid MPI/OpenMP and Hybrid 
MPI/OpenCL models, the two algorithms' performance was approximately four 
times compared with the OpenMP and OpenCL models, respectively. Therefore, 
the experiment showed that the parallelism of the algorithm worked successfully 
in a heterogeneous system. 

Note that the speedup of the OpenMP model was the most considerable 
overall in this study. Nevertheless, the Hybrid MPI/OpenCL model showed a 
130-fold speedup in the algorithm calculation time. The OpenMP model 
improved 3.92 times for the CHL algorithm and 2.56 times for the TSS algorithm. 
In the Hybrid MPI/OpenCL model, the overhead took about 1.5 seconds for file 
I/O and data transmission. This process can only be performed sequentially. The 
time for algorithm calculation was an almost negligible proportion of the entire 
process. As a result, the Hybrid MPI/OpenCL model's total speedup was small 
despite the considerable speedup in the algorithm calculation time. Likewise, the 
overhead was relatively more extensive than the reduced execution time due to 
the parallelization of algorithm calculation in the OpenCL and MPI models. If 
there is a complex algorithm to consume more than 1 minute, the Hybrid 
MPI/OpenCL model is the best parallel processing choice. 

 
 

Table 1. The performance time of each parallel programming model 

 
 
 
 
 
 

Programming  
Model 

Sequential 
OpenMP 

(32 threads) 
OpenCL MPI 

MPI/OpenMP 
(4 nodes 

/32 threads) 

MPI/OpenCL 
(4 nodes 

 32 threads) 

File I/O &  
Data  

Transmission 

CHL 0.94 1.01 1.86 
1.61 

(16 nodes) 
1.47 2.41 

TSS 0.86 0.93 1.82 
1.36 

(10 nodes) 
1.36 2.33 

Algorithm 
Calculation 

CHL 4.05 0.26 0.09 0.26 0.05 0.02 

TSS 1.81 0.11 0.08 0.18 0.02 0.01 

Total (Sec) 
CHL 4.99 1.27 1.95 1.87 1.52 2.43 

TSS 2.67 1.04 1.90 1.54 1.38 2.35 
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Table 2. The speedup of each parallel programming model 

 
Figure 8 outlines another aspect of the two algorithms, showing the 

speedup in algorithm calculation with the OpenCL and Hybrid MPI/OpenCL 
models. The OpenCL model increased the algorithm calculation times of the 
CHL and TSS algorithms 45.01 and 22.58 times, respectively. In comparison, the 
Hybrid MPI/OpenCL model increased this 169.01 times for the CHL algorithm 
and 136.01 times for the TSS algorithm. The large difference in the two 
algorithms' results is due to the two algorithms' computational complexity. The 
GPU core is less advantageous than the CPU core for higher-order calculations. 
However, neither of the algorithms involves higher-order calculations and the 
formula of the TSS algorithm is relatively simple. In summary, the TSS algorithm 
does not take full advantage of the PEs in the GPU compared with the CHL 
algorithm. 

 
Figure 8. The speedup in algorithm calculation 

Programming  
Model 

Sequential 
OpenMP 

(32 threads) 
OpenCL MPI 

MPI/OpenMP 
(4 nodes  

/32 threads) 

MPI/OpenCL 
(4 nodes  

/32 threads) 

File I/O & 
 Data  

Transmission 

CHL 1.00 0.93 0.50 
0.58 

(16 nodes) 
0.64 0.39 

TSS 1.00 0.93 0.47 
0.63 

(10 nodes) 
0.63 0.37 

Algorithm 
Calculation 

CHL 1.00 15.58 45.01 15.89 73.67 169.09 

TSS 1.00 15.92 22.58 9.92 72.26 136.01 

Total (Sec) 
CHL 1.00 3.92 2.56 2.67 3.27 2.05 

TSS 1.00 2.56 1.40 1.73 1.93 1.14 
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5. Conclusion 

 
This paper introduced several parallel processing models and compared 

how parallel processing techniques reduce the processing time of GOCI data, the 
world's first ocean color remote sensor operated in a geostationary orbit. We 
examined the performance of the CHL and TSS concentration estimation 
algorithms. With the OpenMP model, the best improvement was 3.92 times for 
the CHL algorithm and 2.56 times for the TSS algorithm. The performance of the 
parallel programming models from the most improved followed in the order of: 
OpenMP > Hybrid MPI/OpenMP > MPI > OpenCL > Hybrid MPI/OpenCL. 

This study examined basic parallelism using each of the parallel 
processing models. In the future, the amount and allocation of CPU and memory 
must be analyzed precisely to determine whether it can improve performance 
with all the parallelism techniques. It is also necessary to optimize and vectorize 
the algorithms in the OpenMP model, which performed the best. In addition, the 
results of this study were limited to level-2 data. In future research, it is desirable 
to establish parallel processing methods for level-1 and level-3 data to reduce the 
execution time for GOCI data processing markedly. 

Recently, GOCI-II (Han et al., 2017, Han et al., 2019), the successor of 
GOCI, was launched, and has begun servicing data. We expect this study's results 
to help in real-time processing of GOCI-II data, which have superior 
spatiotemporal resolution than GOCI data. Furthermore, we believe that the 
results of this study will contribute to the efficient processing of ocean satellite 
big data. 
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Appendix. Algorithm of Parallel Processing Techniques 

 
This study considers three well-known parallel processing techniques - 

OpenMP, OpenCL, MPI - and its hybrids to accelerate data processing and 
reduce satellite data processing time. This Appendix explains the main concepts 
and advantages of each technique shortly.  

 

1. OpenMP 

OpenMP refers to a parallel processing method using a CPU with 
multiple cores and a shared memory model in a node computer. OpenMP is a 
multi-threaded application for parallel programming. It provides a simple and 
easy-to-use API. It is easier to implement and debug than other techniques by 
using a simple API. We can implement it in a way that divides data and processes 
loops in parallel. In the OpenMP programming model (Figure A-1), we 
considered an interrelation between core and thread. We can simultaneously 
execute the threads as much as the number of cores. Generally, thread number 
had better generate as multiple of the number of cores. OpenMP can support 
several computing languages like Fortran, C, C++. 
 

Figure A-1. OpenMP Programming Model 
 

 
 
 
 
 
 
 
 
 
 
 

GOCI Satellite Data 
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Figure A-2. OpenMP Processing flow chart 
 

 
 
 

2. OpenCL 

OpenCL is a standard parallel programming application and is a cross-
platform model to support both homogeneous systems and heterogeneous 
systems. We can program it for various devices such as CPU, GPU, and FPGA. 
In the OpenCL programming model (Figure A-3), we generated two programs, 
the host program for CPU and the OpenCL program for GPU. We should 
consider an interrelation between the size of a local work group and run-time. 
GPU's compute unit is similar in meaning to CPU. A local work group is a task 
unit inside of 1 computing unit. If we allocate a maximum local work group size 
not exceeding the local memory size, the algorithm will perform efficiently. 
 

Figure A-3. OpenCL programming model 
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Figure A-4. OpenCL Processing flow chart 

 
 

3. Message Passing Interface (MPI) 

Message Passing Interface (MPI) is a standard that describes the 
exchange of information in distributed and parallel processing. Making a node 
that has many CPUs and GPUs is difficult. This is because the mainboard 
capable of supporting multi CPUs and GPUs is so expensive with a serious 
heating problem. So, we considered the MPI model on a cluster system that has 
many nodes. In the MPI programming model (figure A-5), we gave a role to a 
master node and slave nodes. The master node manages the whole, and slave 
nodes perform each divided task. Then, we considered an interrelation between 
the number of nodes and run-time. It has merits and faults. For example, if we 
increase the node number, each slave node has a small task, and algorithm 
calculation takes short. But, each slave node has to receive data for processing. 
So, data transmission takes longer. 
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Figure A-5. MPI Programming Model 

 
 

Figure A-6. MPI Processing and Hybrid MPI/OpenMP processing flow chart 

 
 

4. Hybrid MPI/OpenMP model 

The Hybrid MPI/OpenMP model is a combination of MPI and OpenMP. 
This model's flow chart is the same as the MPI model because the OpenMP has 
no data transmission part. 
 

5. Hybrid MPI/OpenCL model 

The Hybrid MPI/OpenCL model is combined with MPI and OpenCL. 
This model will be decisive to massive data batch processing using a giant cluster.  
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Figure A-7. Hybrid MPI/OpenCL Processing flow chart 
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